

POLITECNICO DI TORINO

Dipartimento Energia

Numerical Assessment of an Innovative Piston Bowl in a Light-duty Diesel Engine

Andrea Bianco¹, Federico Millo², Andrea Piano², Francesco Sapio²

1: POWERTECH Engineering S.r.I., Turin – ITALY 2: Politecnico di Torino, Turin – ITALY

CONVERGE USER CONFERENCE – EUROPE – 2019 March 11 – 15, 2019 – Barcelona, Spain

- Introduction
- Baseline engine model and validation
- Innovative piston bowl
 - Optimization of injector protrusion
 - Optimization of numbers of holes and EGR rate
- Conclusions

• Introduction

- Baseline engine model and validation
- Innovative piston bowl
 - Optimization of injector protrusion
 - Optimization of numbers of holes and EGR rate
- Conclusions

Introduction

Where we were...2018:

Is it possible to reduce in-cylinder Diesel emissions? YES!

Assessment of Innovative Bowl Geometries over Different Swirl Ratios/EGR rates

Andrea Bianco¹, Federico Millo², Andrea Piano², Francesco Sapio²

1: POWERTECH Engineering S.r.l., Turin – ITALY 2: Politecnico di Torino, Turin – ITALY

CONVERGE USER CONFERENCE – EUROPE – 2018 March 19 – 23, 2018 – Bologna, Italy

		Best
	TV bowl	RB bowl
SOOT	-25%	-30%
BSFC	~0%	-4%

This is a good start, but...can we go further?

• Introduction

- Baseline engine model and validation
- Innovative piston bowl
 - Optimization of injector protrusion
 - Optimization of numbers of holes and EGR rate
- Conclusions

CI engine appl.	LD vehicle	
Cylinders #	4	
Displacement	1.6L	
Compression ratio	16:1	
Turbocharger	Single-stage with VGT	
Fuel injection system	Common Rail	
Maximum	100 kW @ 4000rpm	
power and torque	320 Nm @ 2000rpm	

Baseline: re-entrant bowl design

Two CI engine modelling pillars:

- Accurate spray modeling → Spray calibration
- Accurate combustion modeling:
 - SAGE w/ detailed chemistry scheme

Simulation setup (Converge 2.3.17)

- AMR (v,T), $\Delta x_{min} = 0.25 \text{ mm} (\sim 1e-11 \text{ kg/parcel/nozzle})$
- Diesel2 liquid fuel
- O'Rourke turbulent dispersion, RANS k-eps RNG
- Frossling evaporation model
- <u>NTC collision model</u> w/ collision mesh (0.06 mm)
- Dynamic drop drag (default coeff.)
- KH+RT breakup model (cal. time and size const.)
- <u>Discharge coefficient</u> model (w/ Cv correlation)
- <u>Calibrated spray angle</u>

Spray calibration

 Experimental data (constant volume vessel test) available for a reference injection pattern only (Perugia University)

Ref. Case – 8 hole, solenoid CR injector				
Bomb P [bar]	11.28			
Bomb T [°C]	20			
P Rail [bar]	400			

Current signal [A]

GT-SUITE Injector model

Validation results

Numerical Assessment of an Innovative Piston Bowl in a Light-duty Diesel Engine – Converge User Conference – Europe – 2019

Validation results

• Very good agreement for NOx emissions (embedded in mech.dat)

EXP = 3D-CFD 1.0 0.8 0.6 0.4 0.2 0.0 WP1 WP2 WP3

In-cyl Norm NO_x@120CA aTDCF

Qualitativeagreementbetweenexperimental Filter Smoke Number (FSN)and 3D-CFD in-cylinder SOOT mass(particulate mimic soot model)

- Introduction
- Baseline engine model and validation
- Innovative piston bowl
 - Optimization of injector protrusion
 - Optimization of numbers of holes and EGR rate
- Conclusions

Innovative piston bowl

[1] https://www.dieselnet.com/tech/engine_combustion.php (28/09/2017)

[2] http://www.sae-na.it/images/download/ws2016/09%20-%20Andrea%20Trevisan%20_%20SAE-NA%20%20Aftertreatment%20system%20for%20Diesel%20Engines%2027_28%20June%2716.pdf (28/09/2017) [3] https://www.dieselnet.com/tech/engine_combustion.php (01/10/2017)

Innovative piston bowl

Innovative piston bowl

Engine parameters variation

- Hardware parameters:
 - Swirl ratio
 - Compression ratio (piston shape constant squish height)
 - Spray targeting (injector protrusion ΔZ , injector axis angle $\Delta \theta$)
 - Number of injector holes
- Calibration parameters:
 - Spray targeting (SOI timing Δt)
 - Injection pressure
 - EGR rate

- Introduction
- Baseline engine model and validation
- Innovative piston bowl
 - Optimization of injector protrusion
 - Optimization of numbers of holes and EGR rate
- Conclusions

Innovative piston bowl: Optimization of spray targeting

. . .

Optimization of injector protrusion (ΔZ)

Assumptions:

- Negligible differences in in-cylinder flowfield @IVC
- Baseline EGR%
- Constant injected fuel mass (same inj. rate, SOI, etc.) and number of injector holes

Injector tip protrusion test matrix

Simulation results – WP1 – combustion

- HB bowl:
- Results show high sensitivity of SOOT to injector protrusion
- Baseline injector protrusion shows the best results:
 - the lowest SOOT emissions among the different designs (-70% vs baseline)
 - BSNOx between baseline bowl and RB bowl

Simulation results – WP1 – combustion

• HB bowl w/ protrusion Z = 0 mm shows BSFC aligned with baseline

- Introduction
- Baseline engine model and validation
- Innovative piston bowl
 - Optimization of injector protrusion
 - Optimization of numbers of holes and EGR rate
- Conclusions

Simulation procedure

- 3 injector configuration evaluated:
- 7 holes (7H)
- 8 holes (8H) (= baseline bowl)
- 9 holes (9H)

Numerical Assessment of an Innovative Piston Bowl in a Light-duty Diesel Engine – Converge User Conference – Europe – 2019

Numerical Assessment of an Innovative Piston Bowl in a Light-duty Diesel Engine - Converge User Conference - Europe - 2019

Innovative piston bowl: Optimization of numbers of holes and EGR rate

Simulation procedure

- 3 injector configuration evaluated:
- 7 holes (7H)
- 8 holes (8H) (= baseline bowl)
- 9 holes (9H)
- EGR Sweep (3 levels) carried out on WP1 and WP2 for each injector configuration

Assumptions:

- Constant volumetric efficiency, EGR varied through mapping
- Constant injected fuel mass (same inj. rate, SOI, etc.)
- **FMEP** evaluated by means of **calibrated 1D model** to account for the maximum pressure differences

Simulation results – WP1 – combustion – investigation on number of injector holes

- Configuration w/ 7 and 8 holes are the most promising in terms of SOOT
- Negligible differences in BSFC

Simulation results – WP1 – combustion – investigation on number of injector holes + EGR

- Configuration w/ 7 holes show the lowest SOOT emission (-75% vs baseline)
- RB bowl has still the lowest BSFC (-4% vs baseline)

Simulation results – WP1 – combustion – investigation on number of injector holes + EGR

- Configuration w/ 7 holes show the lowest SOOT emission (-75% vs baseline)
- RB bowl has still the lowest BSFC (-4% vs baseline)

HB – 7H – base EGR

Simulation results – WP1 – combustion

Baseline – base EGR

- Introduction
- Baseline engine model and validation
- Innovative piston bowl design
 - Optimization of injector protrusion
 - Optimization of numbers of holes and EGR rate
- Conclusions

Conclusions

- An innovative piston bowl (hybrid bowl) was created, sharing design features of TV and RB bowls
- The hybrid bowl shows the best trade-off for pollutant emissions (-75% SOOT w/ baseline NO_x emission), while fuel consumption is comparable to the baseline bowl. Trend is confirmed on other engine WPs
- It is possible to further reduce Diesel engines in-cylinder emissions, and 3D-CFD predictive combustion simulations could help in investigating and developing innovative bowl designs

Future work

- Further investigation and optimization of bowl designs
- Experimental tests on selected configurations

Conclusions

Conclusions

	TV bowl	RB bowl	HB bowl
SOOT	-25%	-30%	-75%
BSFC	~0%	-4%	~0%

Special thanks to

team for their support

POLITECNICO DI TORINO

Dipartimento Energia

Numerical Assessment of an Innovative Piston Bowl in a Light-duty Diesel Engine

Andrea Bianco¹, Federico Millo², Andrea Piano², Francesco Sapio²

1: POWERTECH Engineering S.r.I., Turin – ITALY 2: Politecnico di Torino, Turin – ITALY

CONVERGE USER CONFERENCE – EUROPE – 2019 March 11 – 15, 2019 – Barcelona, Spain