

35th INTERNATIONAL CAE CONFERENCE AND EXHIBITION

THE ENGINEERING SIMULATION PATH TO DIGITAL TRANSFORMATION

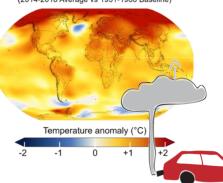
Vicenza, ITALY | 2019, 28 - 29 OCTOBER

Vicenza Convention Centre @Fiera di Vicenza

Engine Virtual Calibration Platform Using Physical Real-Time Integrated Models

<u>Dr. Giulio Boccardo</u> Guido Giardino Diego Zanella

Introduction



 Control system development within the automotive industry is evolving rapidly due to three main drivers (in addition to the evergreen cost-reduction):

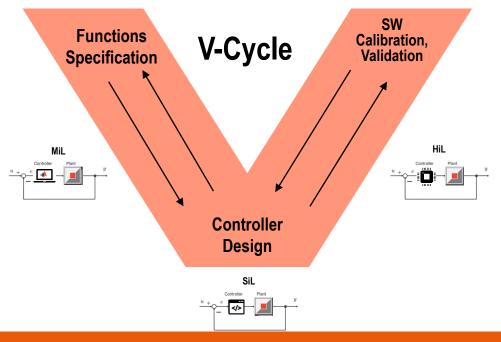
Regulatory Pressure

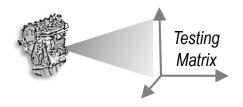
- Pollutants (EU6d w/ RDE)
- CO₂ emissions (CAFE)

Shorter Time-to-Market

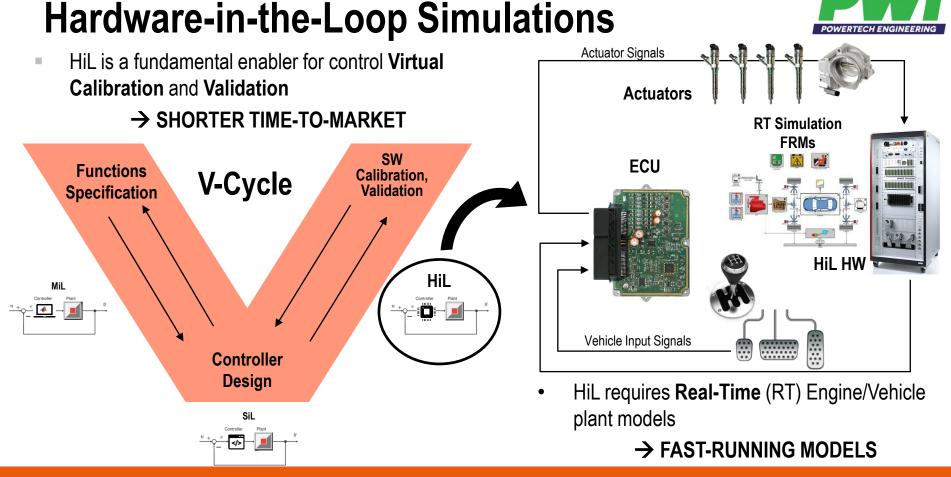
- Shorter lifecycle
- More differentiation

Control System Complexity


- Vehicle Electrification
- More DoFs

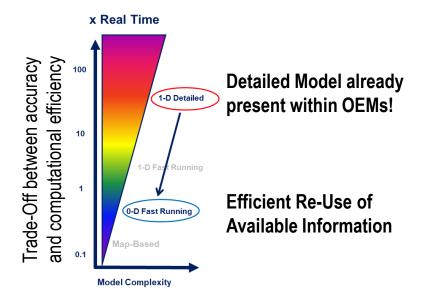

CAE in the Control Development

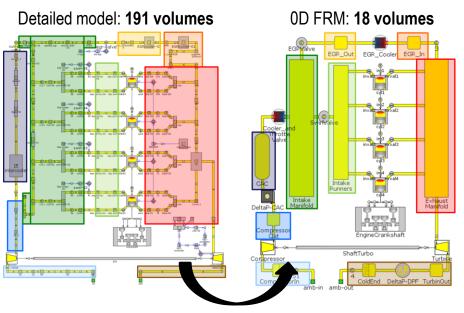
 Virtualization of the product development process (V-Cycle) becomes mandatory, simulation is used throughout to replace the plant (prototypes):


Reduced need for (costly) experimental tests

- V-Cycle (
- Shorter lead time for DoEs, optimizations (scalability)

Control system development moved earlier in the process


www.caeconference.com

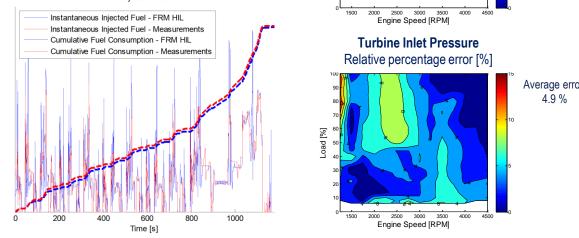

2019, 28 - 29 October

4

Fast-Running Fully-Physical Engine Model

- GT-SUITE 1D fluid-dynamics engine models a de-facto standard in automotive industry
 - Detailed models ~50x slower than RT but can be simplified into fully physical 0.5xRT FRMs

RT-Capable GT-POWER FRMs still based on the very same templates and fluid-dynamic solution
 → HIGHLY PREDICTIVE


"Development and assessment of a Fully-physical 0D Fast Running Model of an E6 passenger car Diesel engine for ECU testing on a Hardware-in-the-loop system" SIA Conference, 2015, PWT - FCA

OWERTECH ENGINEERING

Fast-Running Fully-Physical Engine Model

-oad [%]

- Albeit very computational efficient, FRMs are still very accurate
- Predictive and highly flexible, no need to rebuild them when changes occur
- Can be run in steady-state and transient conditions

BSFC Relative percentage error [%] Average error: Average error: 2.0 % 2.1 % -oad [%] 1500 2000 2500 3000 3500 4000 4500 Engine Speed [RPM] Exhaust Manifold Temp Absolute error [°C] Average error: Average error: 10.8 °C _oad [%]

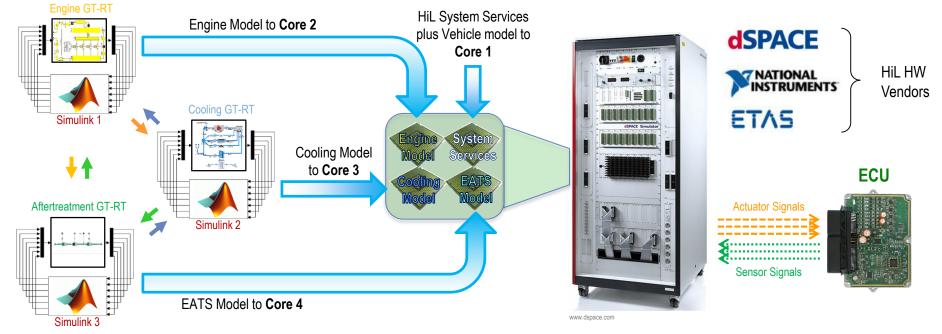
"Development and assessment of a Fully-physical 0D Fast Running Model of an E6 passenger car Diesel engine for ECU testing on a Hardware-in-the-loop system" SIA Conference, 2015, PWT - FCA

Relative percentage error [%]

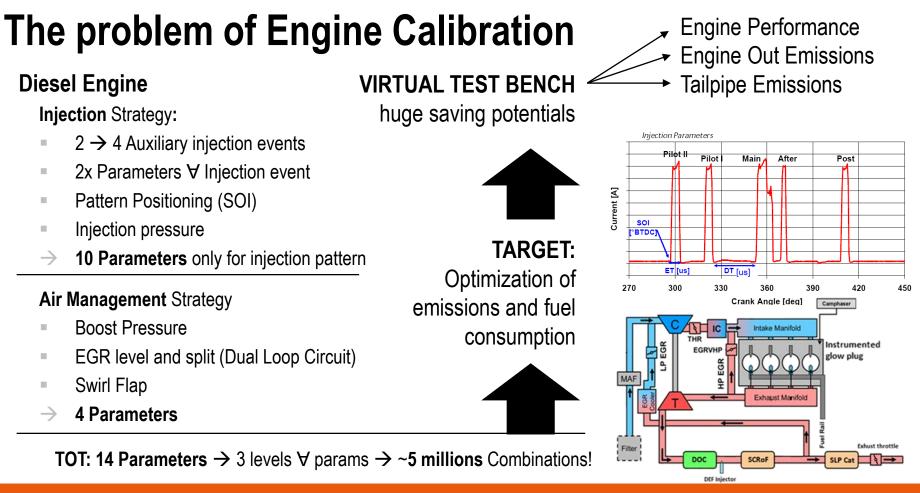
1500 2000 2500

3000

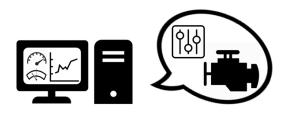
Engine Speed [RPM]


3500 4000 4500

POWERTECH ENGINEERING

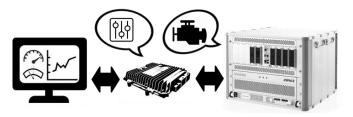

FRMs Deployment on HiL Machines

 GT-SUITE FRMs are encapsulated into Simulink I/O masks, compiled and deployed onto HiL Hardware (e.g. dSpace). Multi-Model and Multi-Core simulations are supported:



"Multi-Core HiL Simulation of an Integrated Engine & Cooling Model" GT-SUITE European User Conference, 2015, PWT - FCA

Virtual Calibration in a Nutshell



Offline Approach (SiL)

5x FRM: TimeStep: ~0.05 ms, Flow Volumes: ~100

- Accurate gas dynamic
- Wall Temperature Solvers
- Predictive Combustion Models
- Predictive Emissions Models

EXP Data Needed: Engine Maps (10²) **Development Time:** 1-2 Months

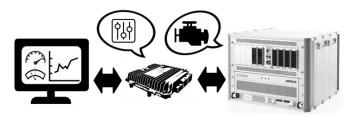
Online Approach (HiL)

0.8x FRM: TimeStep: ~0.30 ms; Flow Volumes: ~15

- Coarse gas dynamic
- Mapped Wall Temperatures
- Mapped Combustion
- Mapped or SP Emissions

EXP Data Needed: DoE (10³) **Development Time:** 3-6 Months

Virtual Calibration in a Nutshell



Offline Approach (SiL)

5x FRM: TimeStep: ~0.05 ms, Flow Volumes: ~100

- Accurate gas dynamic
- Wall Temperature Solvers
- Predictive Combustion Models
- Predictive Emissions Models

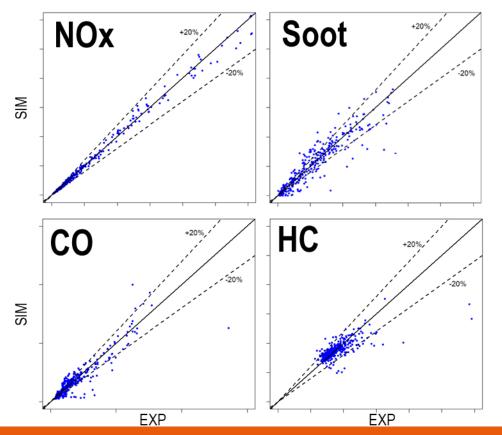
EXP Data Needed: Engine Maps (10²) **Development Time:** 1-2 Months

Online Approach (HiL)

0.8x FRM: TimeStep: ~0.30 ms; Flow Volumes: ~15

- Coarse gas dynamic
- Mapped Wall Temperatures
- Mapped Combustion
- Mapped or SP Emissions

EXP Data Needed: DoE (10³) **Development Time:** 3-6 Months


Semi-Predictive Diesel Emissions

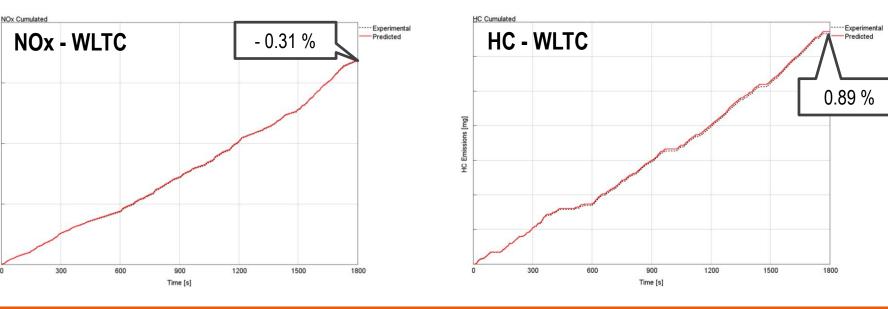
- Semi Predictive Emission Models
 Light-duty Truck Diesel (Euro VI)
- Engine Map Results

$$NO_x, CO, HC, SOOT = a_0 * \prod_{k=1}^p x_k^{a_k}$$

- x_k are the independent variables
- *a_k* are the coefficients, result of the calibration process
- *p* is the number of regressors, index of the model complexity

*Percentage error bands limited to 1% absolute error

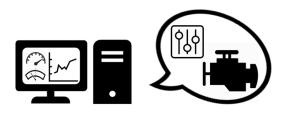
Semi-Predictive Diesel Emissions


Semi Predictive Emission Models

- Medium-size passenger car Diesel (Euro VI)
- Emission maps tested on different Driving Cycles

EXPERIMENTAL: Driving cycle simulation with experimental emission map

PREDICTED: Driving cycle simulation with emission map evaluated via SP emission model



VOx Emissions [mg]

Virtual Calibration in a Nutshell

13

Offline Approach (SiL)

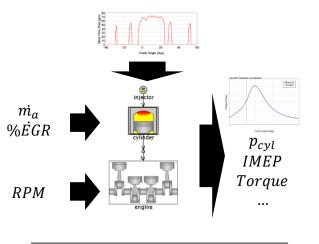
5x FRM: TimeStep: ~0.05 ms, Flow Volumes: ~100

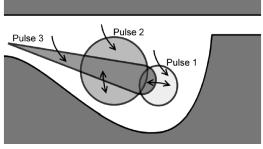
- Accurate gas dynamic
- Wall Temperature Solvers
- Predictive Combustion Models
- Predictive Emissions Models

EXP Data Needed: Engine Maps (10²) **Development Time:** 1-2 Months

Online Approach (HiL)

0.8x FRM: TimeStep: ~0.30 ms; Flow Volumes: ~15


- Coarse gas dynamic
- Mapped Wall Temperatures
- Mapped Combustion
- Mapped or SP Emissions


EXP Data Needed: DoE (10³) **Development Time:** 3-6 Months

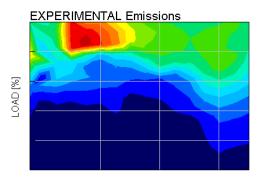
Physical Diesel Emissions Modeling

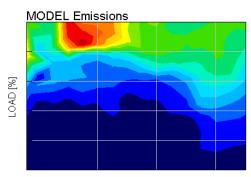
- Predictive Diesel Combustion Model: DI-Pulse
 - Phenomenological combustion model developed by GT.
 - Designed to handle modern multi-pulse injection
 - Multi-zone approach (3 zones per pulse)
 - Improved thermal description of in-cylinder phenomena
 - Improved results of emissions models
 - Combustion rate is predicted based on injection rate & in-cylinder conditions:
 - Injection timings and profiles
 - Pressure and temperature
 - Mixture composition (fresh air, fuel, EGR/residuals)

Courtesy of Gamma Technologies

Physical Diesel Emissions Modeling

Predictive Diesel Combustion Model: DI-Pulse Medium-size passenger car Diesel Engine (Euro VI) with predictive combustion. PFP Error PFP Regression BSFC Error **BSFC Regression** Error [%] 9.00 13.50 -8.00 12.00 7.00 -10.50 6.00 -9.00 -7.50 -6.00 -4.50 -3.00 -1.50 0.00 1.50 3.00 4.50 6.00 Target BMEP [bar] Target BMEP [bar] -4.00 Simulation [bar] -3.00 Simulation -1.00 0.00 3.00 7.50 5.00 5.00 6.00 7.00 8.00 9.00 10.00 9.00 12.00 13.50 15.00 Engine Speed [rpm] Experimental [bar] Engine Speed [rpm] Experimental T3 Error T3 Rearession Crank Angle at 50% Burned Burn Duration 10-75 Error [C] +50 * Ideal Ideal 50.00 -50 °C -40.00 [bar] -30.00 Simulation [deg] Simulation [deg] -20.00 Simulation Target BMEP -10.00 0.00 10.00 20.00 30.00 40.00 50.00 Engine Speed [rpm] Experimental Experimental [deg] Experimental [deg]

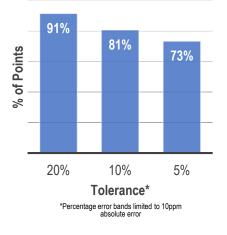

"Set-up and Validation of an Integrated Engine Thermal Model in GT-SUITE for Heat Rejection Prediction" SAE Paper 2019-24-0078, PWT – Jaguar Land Rover

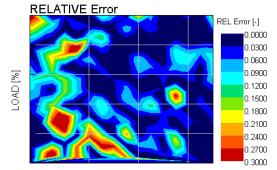

11

35th INTERNATIONAL CAE CONFERENCE AND EXHIBITION

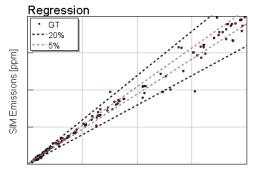
Physical Diesel Emissions Modeling

Predictive Diesel Emission Model: NOx




Medium-size passenger car Diesel Engine (Euro VI) with predictive combustion.

POWERTECH ENGINEERING


N. of OP within error bands:

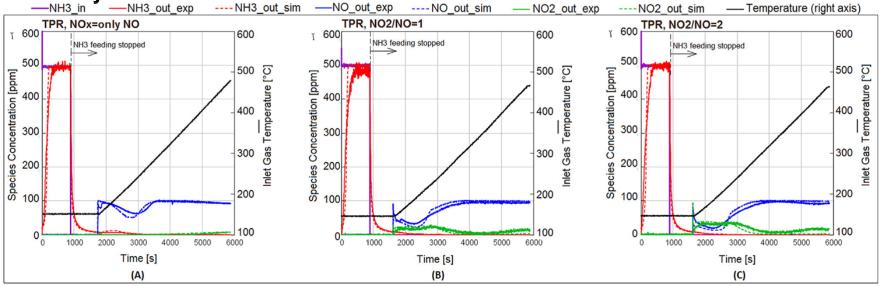
ENGINE SPEED [RPM]

ENGINE SPEED [RPM]

ENGINE SPEED [RPM]

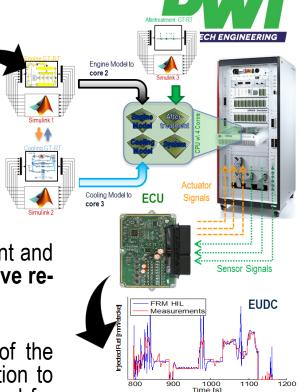
EXP Emissions [ppm]

www.caeconference.com


Aftertreatment Modeling

Physical Catalyst modeling:

- Requires dedicate testing of a Lab-Scale reactor sample on a synthetic flow bench.
- Real time and fully predictive


Ex: Physical Model of a SCR on Filter

Millo F., Rafigh M., Fino D., Miceli P., Application of a global kinetic model on an SCR coated on Filter (SCR-F) catalyst for automotive applications, Fuel Volume 198

Conclusions

- Control system development within the automotive industry is evolving rapidly towards an ever-increasing complexity.
- A process was identified which consents the virtualization of the engine control development and calibration reducing the need for testing and making an extensive reuse of available resources.
- This process relies heavily on state-of-the-art CAE simulation of the engine gas-exchange, combustion and pollutant emission formation to realize a digital-twin of an engine test bench which can be used for online and offline control calibration and optimization.

18

35th INTERNATIONAL CAE CONFERENCE AND EXHIBITION

THE ENGINEERING SIMULATION PATH TO DIGITAL TRANSFORMATION

Vicenza, ITALY 2019, 28 - 29 OCTOBER

Vicenza Convention Centre @Fiera di Vicenza

THANK YOU FOR YOUR ATTENTION Any Question?

Giulio Boccardo

• +39 011 3036481

POWERTECH ENGINEERING S.R.L.

Via C. Invernizio 6, 10127 Torino, IT

g.boccardo@pwt-eng.com

www.pwt-eng.com

