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Introduction

The CO2 challenge, the BEV pain point

Within the framework of policy actions aiming to address the issue of climate change, also the HD
sector has to play a major role.

O CO2 target for Heavy Duty (EU reg. 2019/1242)
U ZERO EMISSION VEHICLES procurement target

(EU directive 2019/1161)

U Increasing number of US states considering Low

Carbon Fuel Standard

O Long charging time & payload reduction: pain point
of BEV’s for Commercial & Heavy Duty

A timeline of policies on heavy-duty-truck emissions standards and electrification

European Union

-15% CO; fleet ~30% CO, fleet
emissions reduction emissions reduction
Euro VI for new-truck sales' Euro VIl  for new-truck sales'
£ P £
~ NSNS N
2010 2030 2050

Emissions-reduction targets for 2030 require fleet electrification to comply. Tighter CO, emissions targets beyond 2030 expected.

United States
-23% greenhouse-gas -46% GHG fleet 75%/40% ZEV® new 100% ZEV®
(GHG) fleet emissions reduc- emissions reduction sales share of Class 4-8 share of all
us 2010 tion for new-truck sales® for new-truck sales®  straight trucks/Class 8 tractors* new-truck sales*
L Lo p— N N -— LN
Ry -y -4 h— g o = Adn
2010 2030 2050

GHG-reduction targets nationwide until 2027. CARB with high ZEV sales targets beyond 2035.

Hvdrogen is a viable solution!

Hyundai Motor Group unveils its
hydrogen strategy, plans to offer
fuel cell versions of commercial
cars by 2028 T

Cummins, Chevron
announce hydrogen

China
China China
China IV ChinaV Vi-a VI-b
N Lol Lo -
N NS NN
2010 -13% fuel-con- -24% fuel-con- 2030 2050

sumption reduction
for new-truck sales®

sumption reduction
for new-truck sales®

Regulation beyond 2021 fuel-reduction targets unclear.

Ricardo advances hydrogen engine t

decarbonisation of transport’
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collaboration gssriae

port the

Base vear 2019, ( ¢ cabin and high roof, base year 2010. *Zero-amission vehicles. *California Air Resources Board Advanced

Car Program. "Base year 2012: average reduction target over ail weight classes
A §

Bernd Heid, Christopher Martens, and Anna Orthofer, “How hydrogen combustion engines can
contribute to zero emissions”, McKinsey & Company 2021
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Introduction : PWT ,';z:rzf,b
Hydrogen ICE strengths PUNCH . - .

Within the framework of policy actions aiming to address the issue of cllmate change also the HD
sector has to play a major role.

H2-ICE for Commercial & Heavy Duty at similar cost of T /éx

Diesel engines (<< of Fuel Cell or Battery)
H2-ICE considered as “zero-emission vehicle”

-

| Contemporary 13 litre HD diesel engine |

«  FCV traction system efficiencles: ICEV traction system efficiencles:

Elf'% No compromise in driving range, payload and reliability e
Retrofitting of existing vehicle & engine architectures Tn e m o om e mom om e e o
"': Reuse of existing footprints & skills, with positive LCA oy B /H-Z-_ffo,f : ﬂZTFCIECVOQ_f - BEV
. 2 INtensi e_ro minim; I ero/minimal I m&
(production & recycle), quick time to market shagentiels smomentuet
. . . . Total cost of
@ Improve/keep sound experience of existing engines Ty p—
HH . capital similar cag v
Lz Capability to operate at Heavy Duty conditions for prolonged expenditre el CE bt 12 - -
tlme & In harSh enVIronment Constraints Enqknwlthamo More space needed Higher weight than
. . . . . (space/payload)  |size as today, but H2 = KUEURST IR combustion engine;
Quick refueling time (like for actual engines) tank needed engneloivicot [l pmos ot
Reduced recharging footprint & no grid peak load vs BEV Uptime/retueing EHEEE
Few H2 stations sufficient for hub based specific fleets e -
[1] Ricardo Webinar — “Development of Heavy-Duty Hydrogen Powertrains for 2025+”, Nov 24th, 2020 l(:ngiil:!muum
[2] adapted from Bernd Heid, Christopher Martens, and Anna Orthofer, “How hydrogen combustion engines can
contribute to zero emissions”, McKinsey & Company 2021 Variations across categories High performance M Medium-high B Medium-low
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Introduction PWT ;3
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H2-ICE key enablers for high efficiency  PUNCH *

Recent technological improvements allow lean burn operation w/ significant advantages.

H,-ICE engine performance
22

Ultra-lean combustion advantages:

* ‘ . A EA

20— T2z . . .

18 | AN Ve 1T = O Ultra-low emissions, including NOx
= s 1 2132
s 16— \ = _E % Q High thermal efficiency, thanks to low heat
o 14 d : = | S rejection and faster combustion
w12 / 4@0\6@?* I
> © T = ;
5 10 ; . GE) O High knock tolerance and good performance

8 N o | x

6 o, | =18

——k < L .
4 Stoichiometric H,-ICE
06 0810121416 18 2,0 2,224 2,6

Ultra-lean H,-ICE
A/F Ratio [-]
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Introduction

Ultra-lean H2 combustion systems

Different combustions systems could be exploited for lean-burn hydrogen combustion.

PFIl solutions

|

PFI

re-entrant
bowl

i
Diesel /

A

Spark
plug

DI solutions

PFI Spark

plug

TJI solutions

PFI

TJI active

7

>

. . Cost;
Retrofit benefit Complexity
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A state-of-the-art low-compression ratio, turbocharged, 3.0L displacement diesel engine architecture
was selected as case study.

A Max. rail pressure 1000 kPa
Minimum level of Hydrogen Max. static H, flow > 14gls
cost and complexity =g gine Min. dynamic H, flow 0.06 g/s

Max. ET at Max. speed 30 ms @ 4000 RPM

Max. tank pressure 700 bar

U The original diesel engine block, the swirl-based
cylinder head, the turbocharger and the cam
timing kept unchanged

0 Centrally mounted substituted with
a spark plug

O Implementation of PFI system - re-design of
intake system

Prof. Federico MiLLO — Synergetic application of 0/1/3D-CFD approaches for hydrogen-fuelled spark ignition engine simulation .
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Case study
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Development of a 0/1/3D-CFD synergetic approach to investigate H2-ICE potential.

3D-CFED simulation

Outcomes used as a reference
for calibrating a predictive
combustion model in 1D-CFD
environment

.I‘ Prof. Federico MiLLO — Synergetic application of 0/1/3D-CFD approaches for hydrogen-fuelled spark ignition engine simulation
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0/1D-CED simulation

GT-SUITE combustion model
correlation based on the
peculiarities of H2

1D-CFED simulation

Preliminary assessment of the
engine operating maps for the
selected architecture
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Simulation methodology - PWT o2
3D-CFD simulation environment : PUNCH * -~
Development of a 0/1/3D-CFD synergetic approach to investigate H2-ICE potential.

3D-CFED simulation

Outcomes used as a reference
for calibrating a predictive
combustion model in 1D-CFD
environment

D RANS K-epS RNG turbUIGnce mOdel Fue| Species HZ/SyngaS
d Combustion model: Detailed chemical kinetics MeCh_an'Sm Zhang et al. (2017)
solver (SAGE) Species 44
Predicti g ol IS0 f iall Reactions 251
re I.C Ve an usa. € aiSo Tor partiaily- NOXx Detailed chemistry
premixed combustion
u Can be used for aUtO-ignition (kﬂOCking) [1] Zhang, Y., et al., “Assessing the predictions of a NO x kinetic mechanism on recent hydrogen and

syngas experimental data”, DO/: 10.1016/j.combustflame.2017.03.019
[2] Dayma, G., et al., “Effects of air contamination on the combustion of hydrogen-effect of NO and

. . . . .
We” SUltEd for €mission mOdelllng NO2 addition on hydrogen ignition and oxidation kinetics," DOI: 10.1080/00102200600793171.



Simulation methodology
3D-CFD simulation environment — Results

Lambda 2.3 — EGR 0% Lambda 2.3 - EGR 15% Lambda 2.3 — EGR 15% - Early ST
” # _ 3D-CFD model predicts
g il I S the impact of different
B 2 engine calibration in
£ o o £ terms of lambda, EGR,
i ST
; g 1 ; ; ; j=o}
q45 0 45 90 -45 0 43 90 -45 0 45 90‘:J
Crank Angle [deg] Crank Angle [deg] Crank Angle [deg] O At constant sp ark
WEAONE e ACCADIT e oAbt Plane B timing, the increment
Plane A Plane A Plane A

of EGR rate results in
a slower combustion
process

O Advanced ST leads
to a speed-up of the
combustion process
with a comparable
combustion duration

Plane A: T[K] Plane B: yH202 [-]
B T || . L T
600 800 1000 1200 1400 1600 1800 2000 2200 6.0E-05 R8.O0E-05 1.0E-04 [1.2E-04 14E-04 1.6E-04 [1.8E-04 20E-04
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Simulation methodology : PWT
1D-CFD simulation environment : PUNCH

Development of a 0/1/3D-CFD synergetic approach to investigate H2-ICE potential.

0/1D-CED simulation

GT-SUITE combustion model
correlation based on the
peculiarities of H2

SITurb Predictive Model:
L Entrainment and Burn-up approach dge = Ay (Sy +S)) d;‘ib _ M. ;Mb
O New Laminar Flame Speed Model 5 (T ) = S <_u)a <p_u)ﬁ G )
to consider hydrogen properties LAP» fw Pus Xp AT, ) \po Y
!/ !/ 1
Q Modified Turbulent Flame Speed St(p2, Hz,w) = Crrs(pz, Hz) 0’ [ 1 - 2
Model to capture flame velocity 1+ Crke (L—;)
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1D-CFD simulation environment — Predictive combustion model  PUNCH *. .

New Laminar Flame Speed Model to consider hydrogen properties:

Simulation methodology PWI /2.

T\ [P\
0 Model developed considering Zhang et al. S1(®, T, Pw Xp) = Spo (T_:) (_0> (1 —yxp)
mechanism results
S10(P) = ks + kydp* + k3dp® + kyp® + ks + kg
U Pressure and temperature from low to high

— 2
load operation, up to ultra-lean and 30% EGR a(p) =a p"+ a1 +ag
rates (>1600 operating conditions) B(@) = P2 9%+ P19+ o
V() =v2 d* +v1d +vo
Pressure=40 bar —EGR =0 Pressure=40 bar —-EGR =10 % Pressure=120 bar—- EGR =0
16 16 16

e Zhang etal.
m Developed model

e Zhang etal
m Developed model 1000 K

@ Zhang etal. 1000 K

m Developed model

(o]
T
(o]
T
2
T

Laminar Flame Speed [m/s]
o0

Laminar Flame Speed [m/s]
o0

Laminar Flame Speed [m/s]

0.2 04 0.6 08 1.0 0.2 04 0.6 08 1.0 0.2 04 0.6 0.8 1.0
Equivalence Ratio [-] Equivalence Ratio [-] Equivalence Ratio [-]
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Simulation methodology

1D-CFD simulation environment — Predictive combustion model

Combustion phenomena well predicted by SITurb.

Low Load / Low Dilution

L Good correlation between
3D- and 1D-CFD models for
in-cylinder pressure and burn
rate.

Q Effect of lambda and EGR
variation captured by the
model

O Satisfactory accuracy level
confirmed at increasing
engine load and in case of
retarded spark timings

160

120

90|

Pressure [bar]

30

60+

120

Pressure [bar]
(o)} o
o [=)

e
=2

0

A

1120

180

30 60 90
Crank Angle [deg]

Medium Load
160

-30

1120

180

140

Crank Angle [deg]

Heat Release Rate [J/deg]

Heat Release Rate [J/deg]

Pressure [bar]

Pressure [bar]
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Low Load / High Dilution
120 160
== 3D-CFD
=== |D-CFD

Heat Release Rate [J/deg]

-30 0 30 60 90
Crank Angle [deg]
High Load
120 160
o
90} 1120 =
=
i)
2
60+ 180 B
3
L5}
30 a0
3
s
0 0
-30 : 90
Crank Angle [deg]
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Simulation methodology
1D-CFD simulation environment — Predictive combustion model

Combustion phenomena well predicted by SITurb.

O MFB-50 and Combustion Duration 10-75 errors lower

than 3 deg

O Maximum pressure values and phasing properly

predicted by the model

L Good accuracy in terms of NOx predictions against 3D-

CFD results
300

B 3D-CFD
250 B 1D-CFD

200

150

100

NOx Emissions [ppm]

Lh
o

Low Load

Increase ‘
_ dilution _ \
o H=——  HN

Medium Load

Spark timing
retard

- EGR+
Spark timing
optimization

High Load

MFBS0

ID-CFD [deg aTDCI]

e
S5 0 5 10 15 20 25
3D-CFD [deg aTDCH]

Max. Pressure

+5 bar 7

0 30 60 90 120150
3D-CFD [bat]
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| -75
20, MFB10-7
— 16} Bdee -
=¥
g |
= 12|
-
O 8
a
= 4p
04— -
0 4 8 12 16 20
3D-CFD [deg]
ZECA at Max. Pressure
,;3 20
w15}
e
2 10
2 s
S
a 0L
G |
-5 0 5 10 15 20 25
3D-CFD [deg aTDCH]
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Simulation methodology |
1D-CFD simulation environment j PUNCH . - -

-~ q“o

Development of a 0/1/3D-CFD synergetic approach to investigate H2-ICE potential.

Synergetic approach among 0/1/3D-CFD numerical tools

1D-CFED simulation

Preliminary assessment of the
engine operating maps for the
selected architecture

Engine control unit Preliminary engine calibration Engine Maps

Compressor surge EGR 0%
and speed limit
[ Max. boost
Temp. (T2) | Load
Max. in-cylinder controller
Press (Pmax)
Max. Turbine inlet
Temperature (T3)
__and Pressure (P3

0.6 BTE Brake Thermal Efficiency

1
BSNOx ¢
limit &

‘,.

BTE
[%]

Turbine Rack Position>

0.4

BMEP [bar]

ol 5.0

[ Knock Induction  }— ~@- A=21 %224 Knock

Time Integral (KITI) Knock/NOx — -4 k=22 --#-A=235 i limit

[ Brake Specific NOx | controller Sparkliming - h=23 k- A=26 I
emission 0.0 .

0.0 05 1.0 _ 1000 1500 2000 2500 3000 3500 4000
Knock Induction Time Integral [-] Engine Speed [RPM]

Brake Specific NOx [g/kW-h]
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Simulation methodology PWT *mﬁjﬂ

1D-CFD simulation environment — Engine controls for map definition j 'PUNCH NP

A preliminary optimization of the main calibration parameters, as spark timing, boost pressure,
lambda and EGR percentage was performed over the entire engine operating map.

O ADoE methodology was adopted to select the U Higher EGR content implied an increment of the in-

optimal combination of lambda and EGR ratio cylinder temperature ("knock likelihood), thus
to maximize the Brake Thermal Efficiency (BTE) requiring a more delayed combustion (\\BTE)
3500 RPM x 8 bar BMEP — EGR 0% 3500 RPM x 8 bar BMEP — EGR 5%

0.6 BTE 0.6 BTE
- [%] - [%]
< -~
1 BSNOX N = BSNOX
8 I t = v . Im-t
%ﬂ O 4 ............ Iml ......... }\‘ sesseeseher l E ()‘4 I I
S 5 8
= i Z
2 \ s 2 nls
Q2 Q2
202 : | & 02f
P region Knock 2
&7 limit . & Knock .

limit
0.0 1 0.0
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Knock Induction Time Integral [-] Knock Induction Time Integral [ -]
AI giffc.;fggiicgomﬁzope;i)gsrgggf application of 0/1/3D-CFD approaches for hydrogen-fuelled spark ignition engine simulation October 21, 2021 16



Results : L3
Engine maps i PUNCH Y -
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The complete engine model was exploited to assess the performance of the hydrogen fueled engine
on the complete operating map.

0 A maximum power density of 34 kW/L

. 16 Brake Thermal Efficiency [FB50
can be achieved at 3500 RPM i 16 leg aTDCH]
O Low-End Torque region strongly £ 10 I I
limited by turbocharger system S s By B0
= high boost requirement due to the T8
poor volumetric efficiency caused by ‘2‘ T l
the low-density hydrogen injected in 10 =
the intake ports S
16 M 'GR
O Awide high-BTE area was achieved = a
with a maximum level of 41% at 2500 E I
RPM x 8 bar BMEP = B30
z _
6 [——
O Exploitation o_f high dilution in the 4 . o 1500 o po— = e o I
low-load region 2 Engine Speed [RPM]
Al grofG.ngericCooMlLLo—Sycnerggéic application of 0/1/3D-CFD approaches for hydrogen-fuelled spark ignition engine simulation October 215t 2021 17
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Results - PWT 20
Compression Ratio sensitivity analysis s PUNCH ‘m_\;ff;,,L ;

To evaluate potential benefits in terms of power density a sensitivity analysis to the Compression Ratio
was carried out.

= 40r ]
Q Significant spark timing advance at ﬁﬁ 30 -
lower CR due to the reduced knock %Eﬂ 20¢ -
likelihood 3 10
- AR 0 =Ly
0 Advanced MFB-50 as a results of the /—IU ER
spark timing advance and the lower 1720 7:”
combustion duration | S0 5 9
3 50 |-4ﬂ s
O Potential engine efficiency EQ 45—
improvement of +2.5% with a CR 25 40 \‘\.
reduction of ~3 g— 35 |
& 30 ;
O Significant improvement of the power 1 @
density (+11 kW/L) =
— Baseline
0.5 Diesel Engine

Compression Ratio [-]
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Conclusions PWI /2.
! PUNCH %0
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A comprehensive methodology based on the synergetic use of 0/1/3D-CFD numerical simulations to
assess the performance of a new generation of hydrogen fueled engines.

A PFI retrofitted state-of-the-art low compression ratio, turbocharged, 3.0L displacement diesel engine
was selected as a first test case achieving 41% peak BTE and 34 kW/l specific power output.

a5

Pre-

Main features of the proposed methodology include: = : B cramie
0 Coupling among 0/1/3D simulation platforms 245 Iadovﬂoﬂ
d 3D-CFD combustion modelling based on detailed chemistry s g
scheme g 0 -
d Specific laminar flame speed correlation, modified turbulence v g [0 Optimized piston
flame speed and ignition delay maps to capture H2 combustion 0
peculiarities @““ T R
E " e
Already ongoing activities are focusing on the assessment of %40 I“’"‘é‘éfed
more complex architectures including DI, TJI and dual-fuel g) |
operations. w as || Rk
- SLIRS [ Optimized piston
36
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